GeoAI-Cubes: training Artificial Intelligence for Earth Observation | icgc

GeoAI-Cubes: training Artificial Intelligence for Earth Observation

Datasets for thematic classification and change detection

GeoAI-Cubes is a spatial and temporal database from different sensors designed to provide pre-processed information from a variety of Earth observation systems or external data fully aligned at the pixel or tile scale.

Geoaicube is an initiative promoted by the Catalonia Space 2030 Strategy

The dataset is optimized to efficiently train artificial intelligence models focused on geospatial applications. All Geoaicube data is in Zarr format, georeferenced in the same WGS84 UTM31N projection and covering the same geographical extent and with the labeling of the Land Cover Map of Catalonia, major changes 2023:

  • UTM X West: 427000.
  • UTM X East: 459000.
  • UTM Y North: 4630900.
  • UTM Y South: 46113000.

Reuse of information

Logo CC BY 4.0
The use of the data is subject to a Creative Commons Attribution 4.0 International license.   
More information

Contains Sentinel Copernicus data modified by the ICGC.

It is requested that all methodologies and results obtained by the different scientific groups be shared with the ICGC via email: icgc@icgc.cat.

Viewer

Full window viewer

 

Dataset Description

The following cartographic and additional information layers have been converted to ZARR format (more efficient for data ingestion processes into AI models):

  • Geodatacube_orto2024.zarr: 25 cm resolution (32.9 GB).
  • Geodatacube_S22024_2025.zarr: 10 m resolution (1.19 GB).
  • GeoDataCube_access_XARRAYvsZARR_cat.ipynb: Jupyter Notebook explaining access to information in zarr format.
  • Field_ROI_geodatacube.gpkg: GPKG of crop 1 for Sentinel-2 time series analysis in the notebook.
  • Field2_ROI_geodatacube.gpkg: GPKG of crop 2 for Sentinel-2 time series analysis in the notebook.
  • bbox_epsg32631.geojson: File in geojson format of the geographic scope.

The usability of GEOAICUBES, happens in I.A. to have good labels. The proposal is that these come together with the publication of the aforementioned geoaicubes (high and low resolution) with the labeling of the Land Cover Map of Catalonia, major changes 2023. 

 

Download

The data can be downloaded directly from the address https://datacloud.icgc.cat/datacloud/geodatacubes.

Due to the large volume of files available, it is recommended to download using the FTP client.

Server: ftp.icgc.cat | User: descarregues01 | Password: descarregues01

 

Examples of the available set of images

Sentinel 2 RGBOrthoimage RGBnDSM
Sentinel 2 RGB
Ortoimatge RGB
nDSM
Sentinel-2 IRCOrthoimage RGB IRC 
Sentinel 2 IRC
Ortoimatge IRC
 

 

Land cover mapLegend
Graphic representationClassNameColorClassNameColor
Mapa de cobertes del sòl
1Herbaceous crops 22"Eixample" 
2Vegetable gardens, nurseries and forced crops 23Lax urban areas 
3Vineyards 24Isolated buildings in rural areas 
4Olive groves 25Isolated residential areas 
5Other woody crops 26Green areas 
6Crops in transformation 27Industrial, commercial and/or service areas 
7Dense coniferous forests 28Sports and leisure areas 
8Dense deciduous, broadleaf forests 29Mining and/or landfill areas 
9Dense sclerophyll and laurel forests 30Zones in transformation 
10Scrub 31Road network 
11Open forests of conifers 32Urban bare soil 
12Deciduous, broadleaf open forests 33Airport areas 
13Sclerophyll and laurel open forests 34Railway network 
14Meadows and grasslands 35Port areas 
15Riverside forest 36Reservoirs 
16Sòl nu forestal 37Lakes and lagoons 
17Burnt areas 38Watercourses 
18Rocks and swamps 39Ponds 
19Beaches 40Artificial canals 
20Wetlands 41Sea 
21Urban center 0Outside the border