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ABSTRACT:  

In order to evaluate water reserves in mountain watersheds the Institut Geol�gic de Catalunya 
(IGC) jointly with Institut Cartogr�fic de Catalunya (ICC) have begun a project to model snowpack 
depth distribution at the study site of Vall de N�ria (38 Km2 basin located in eastern Pyrenees).  Re-
mote sensing airborne LIDAR (Light Detection and Ranging) survey and field work validations were 
performed to make this calculation. Modelling snowpack distribution is a complex task because of its 
spatial variability. Despite being a recently developed technique, LIDAR has become a useful method 
in snow sciences because it has the advantage to offer dense point data and to cover wide areas with 
little economic and field work effort. The new methodology presented combines LIDAR data with field 
work, the use of Geographical Information Systems (GIS) and the stepwise regression tree (SRT), as 
extrapolation technique has allowed us to map snowpack depth distribution with high spatial resolu-
tion. Extrapolation is necessary because raw LIDAR data is only obtained from part of the study area 
in order to make the technique as affordable as possible. Promising results show low differences of 
total snow volume calculated from modeled snowpack distribution and total snow volume from LIDAR 
data only differ 1.4%.  
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1 INTRODUCTION 

Mediterranean climate is characterized by a 
high precipitation variability. As a result of this 
variability the Iberian Peninsula, and Catalonia 
as part of it, are affected by frequent and serious 
droughts that alter the availability of water 
supply. Hydric resources are not only concerned 
by natural fluctuations, but social pressure must 
also be taken into consideration. CataloniaÕs 
internal fluvial basins (those, whose responsibili-
ty is the local Government) occupy 52% of total 
CataloniaÕs surface but houses the 92% of the 
total population (Sangr�, 2008) which increases 
hydric stress. As a consequence of particulari-
ties mentioned above it is necessary to quantify 
hydric resources stored as snow. 

High snowpack variability (Elder, 1995) and 
sparse snow depth data make it difficult to mod-
el snow cover. For this reason remote sensing is 

essential when modelling wide areas. 
The use of airborne LIDAR (Light Detection 

and Ranging) to model snow depth has the ad-
vantage of covering large areas with high reso-
lution at a relatively low economic cost. The ap-
plication of LIDAR to model snow depth is poss-
ible due to the high accuracy it provides, vertical 
error of 15 cm in ideal conditions, as several 
studies have shown (Hopkinson, 2001; Fass-
nacht, 2005; Deems, 2006) 

The present study, Use of LIDAR to eva-
luate water reserves stored as snow in mountain 
watershed, is carried out by Institut Geol�gic de 
Catalunya (IGC) jointly with Institut Cartogr�fic 
de Catalunya (ICC). The project is composed of 
several stages with the final aim being to model 
water availability in mountain watersheds. First 
of all, snow depth volume was modeled and the 
results of this first stage are presented here.   

A pilot study site at Vall de N�ria (fig. 1) has 
been set up in order to validate LIDAR tech-
nique and to establish a valid methodology to 
model snow depth over large areas.   

The valley itself covers an area of 38 km2 

with altitude ranging between 1950m at N�ria 
Sanctuary and 2910m at the summit of Puigmal 
peak. Most part of the surface is above timber-
line with meadows and rocky soil covering most 
of the area that makes drifting snow really fre-
quent.  
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2 DATA AND METHODS 

As pointed out before, two LIDAR flights 
were necessary to obtain snow depth
LIDAR flight with snow coverture
9-3-2004. Covering the same area, 
out snow was done on 9-8-2006. 
laser utilized was Optech ALTM3025.

Once flights were concluded
processed with specialized TerraScan
to generate two high resolution
Digital Elevation Models (DEM). Afterwards, 
subtraction of both models was
snow depth and distribution.  

In order to validate snow depth 
from LIDAR data (more than 1 point m
tained), a simultaneous field work 
collect ground observations of snow depth. To 
achieve this purpose two teams equipped with 
submetric GPS systems were formed
buted throughout different creeks
of transport (backcountry skis) and time nece
sary to get an accurate GPS position (exceeding 
30 minutes per measure) only 19 
were acquired. This sparse data made 
to validate snow depth LIDAR data
methods were used in the validation process
such as field work photography.

Once LIDAR snow depth data was 
processed and validated, modelling
out through extrapolation. In reality a
N�ria extrapolation was not necessary because 
LIDAR data was available from 
Nevertheless, to increase project efficiency on 
large areas it was required to get LIDAR data 
only from a small part of the study area, th
a LIDAR strip (fig 2). Then, extrapolation 

before, two LIDAR flights 
were necessary to obtain snow depth data. 

coverture was done on 
overing the same area, a flight with-

2006. On both flights 
ALTM3025.

concluded, raw data was 
TerraScan¨ software 

high resolution, 1m cell size, 
DEM). Afterwards, 

 done to obtain 

In order to validate snow depth calculated 
(more than 1 point m2 is ob-

imultaneous field work was made to 
collect ground observations of snow depth. To 

two teams equipped with 
formed and distri-

creeks. Due to means 
) and time neces-

position (exceeding 
only 19 data points 

This sparse data made it difficult 
LIDAR data, so indirect 

validation process, 

depth data was 
modelling was carried 

In reality at Vall de 
not necessary because 

from the whole area. 
ject efficiency on 

to get LIDAR data 
only from a small part of the study area, that is, 

. Then, extrapolation was 

necessary to obtain snow depth data from 
research area.  

Geographical Information Systems 
and geostatistics were employed
depth. ArcGIS 9.3¨ GIS software
calculate topographical variables that
the distribution of snow depth (Marchand 2005, 
L�pez-Moreno, 2006; among ot
pect, altitude, curvature, distance to main range
and solar radiation. Despite DEM resol
1m working resolution was esta
cell size in order to optimize co
sources.   

Figure 2. Snow depth data extrapolation from 
one strip LIDAR data.  

In addition to these independent variables 
other important factors must be taken into a
count when modelling snow depth. As pointed 
by Molotch (2005) wind is one of these impo
tant factors. Therefore upwind index
(2002), was added to independent variables. 
Upwind index measures exposure of cell in a 
DEM depending on prevailing wind direction. 

Figure 1. Vall de N�ria location map. 

necessary to obtain snow depth data from whole 

Geographical Information Systems (GIS) 
employed to model snow 

GIS software was used to 
calculate topographical variables that determine 
the distribution of snow depth (Marchand 2005, 

among others): slope, as-
, distance to main range

Despite DEM resolution was 
1m working resolution was established at 5m 
cell size in order to optimize computer re-

Snow depth data extrapolation from 

In addition to these independent variables 
other important factors must be taken into ac-

snow depth. As pointed 
by Molotch (2005) wind is one of these impor-

upwind index, Winstral 
added to independent variables. 

exposure of cell in a 
DEM depending on prevailing wind direction. 
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This index was calculated with the expression 
shown(1).  
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Upwind index expression calculation. Where 
ELEV is the altitude of interest cell, A the azi-
muth of the search direction, (xi, yi) coordinates 
of the cell of interest and (xv, yv) the coordinates 
of the cells found in the same direction of pre-
vailing wind.  

Method utilized for extrapolation was step-
wise regression tree (SRT) proposed and im-
plemented by Loh (2002) in algorithm GUIDE as 
an evolution of the classical regression tree
(Breiman, 1984).  

Through GUIDE algorithm (it can be ac-
cessed on the internet: 
http://www.stat.wisc.edu/~loh/guide.html) a tree 
classification was made. In the model, inde-
pendent variables were used to explain the de-
pendent variable, snow depth. At each final tree 
node, a stepwise regression was calculated. 
The regression at each final node ensures a 
small and homogeneous sample size which im-
plies a better accuracy on prediction and cartog-
raphy (Huang, 2003).  

Regression tree modelling has the advan-
tage to take into consideration no-linearity of 
dependent variable (DeÕath 2000 & Huang 
2003). 

GUIDE algorithm with regression at each fi-
nal node jointly with LIDAR technology and the 
methodology here presented made it possible to 
overcome some of the problems pointed out by 
L�pez-Moreno (2006) about regression trees. 
The result was a cartography representing the 
snow depth distribution accurately over the re-
search area (see fig. 6).      

3 RESULTS AND DISCUSSION 

3.1 LIDAR snow depth model.

Validation of original snow depth model re-
sult of subtraction of DEMs was necessary due 
to errors produced by different factors as slope 
or vegetation (Deems, 2006; Hopkinson, 2001). 
Validation methods applied were: 

1. Creation of control areas where snow 
depth is equal to 0 identified by field photogra-
phy (fig 3). 

2. Identification of snow accumulation 
areas on the map and its characterization with 
snow profiles.  

Figure 3. Location of control areas digitalized 
with known snow depth. 

As result of validation process Root Mean 
square Error (RMSE) for the entire control areas 
was calculated: 0.33m. If difference is made be-
tween different control areas (table 1) it is con-
firmed that slope and vegetation cover have an 
important role as error sources.  

Control areas RMSE (m) 
Finestrelles ski slope 0.351 

N�ria Sanctuary 0.103 

Table 1. RMSE calculated for different control 
areas.  

As shown in map (fig. 3) the surface near 
Finestrelles ski slope is a rocky area partially 
covered by shrubs with an average slope of 38¼. 
On the other hand, the area situated near N�ria 
Sanctuary is nearly flat (average slope: 2.5¼) 
and covered by meadows. Consequently, RMSE 
in Finestrelles ski slope is higher, 0.351m, than 
in N�ria Sanctuary, 0.103m. It is demonstrated 
how slope and soil cover play an important role 
in quality of LIDAR data, as demonstrated by 
Hopkinson (2001) and Deems (2006).   

Validation also included the analysis of to-
pographical profiles in areas of extreme high 
snow accumulation. In total, twelve profiles were 
obtained from original DEMs (one of them 
shown in fig 4.). These profiles show evidence 
that snow depth accumulation up to 11 meters is 
valid in very specific topographical conditions 
(deep streams and wind sheltered areas). So in 
validation process all values higher than 11m 
were considered erroneous and subsequently 
eliminated. 



International Snow Science Workshop, Davos 2009, Proceedings

205

Figure 4. Profile with bare-earth and snow cov-
ered DEMs (left) that shows an 11m snow ac-
cumulation in a stream (right). 

3.2 Snow depth modelling. 

Snow depth was modeled with topographical 
variables mentioned above: slope, aspect, alti-
tude, curvature, distance to main range, solar 
radiation and upwind index.  

AspectÕs circularity (Burrough, 2000) was 
treated dividing aspect in two components, 
north-south component and east-west compo-
nent (Marchand, 2005).  

Correlation between topographical variables 
and snow depth is presented in fig. 5. Higher 
correlation coefficient was found with elevation, 
0.251, and curvature, -0.290. Lower tempera-
tures with increment of altitude explain positive 
correlation between snow depth and elevation. 
CurvatureÕs high correlation is explained by wind 
redistribution. The location of N�ria valley 
makes it very exposed to north winds, conse-
quently snow redistribution caused by wind is 
very important. 

Figure 5. Pearson correlation coefficient be-
tween snow depth and considered topographical 
variables. 

As a result of low correlation coefficients in 
some variables (east-west aspect, slope and 
distance to range) they were excluded from tree 
modelling. 

The final model presented here is the result 
of applying LIDAR technology to calculate snow 
depth data, subsequent validation process and 
modelling with GUIDE algorithm. As shown be-
fore, extrapolation was necessary, for project 

efficiency on large areas, so data used for the 
final model corresponds only to one LIDAR flight 
strip (15% of total research area, see fig. 2). 
Snow depth data was obtained from this strip 
and to calculate the independent variables (cov-
ering de whole area) bare-earth DEM was used 
which made it possible to model snow depth for 
the entire study area. Fig. 6 shows the snow 
depth map resulting of this process.     

Cartography shows different snow depths 
well represented. Homogeneity is not empha-
sized by the model (contrary to others models 
not being presented here). So the map reflects 
spatial variability of snow depth which is one of 
its most known characteristics (Elder, 1995).  

Other aspects to consider in the map analy-
sis: a) great accumulations in streams are only 
visible over 1900m so influence of curvature is 
restricted to high altitudes, b) the map shows 
slopes facing south and situated at lower 
heights without snow, matching with field obser-
vations, and finally c) areas well oriented, facing 
north and topographically sheltered from wind, 
show great snow accumulations and are also 
well represented at the final model.  

Tree model obtained has 33 final nodes and 
prediction accuracy of the extrapolated model is 
relatively high, explaining up to 53% of snow 
depth variability.  

The final aim of the project is to evaluate 
water supplies stored as snow. In this sense 
more important than snow depth accuracy of the 
extrapolated model is the difference in total 
snow volume from validated LIDAR model. So, if 
snow volume calculated from validated LIDAR 
model (29.3 hm3 of snow) is compared to snow 
volume calculated from extrapolated final model 
(28.9 hm3) difference is -1.42%.  

Summarizing, snow volume difference be-
tween LIDAR model and extrapolated model is 
only -1.42%. That result seems to validate the 
methodology and technique used in this re-
search. 

4 CONCLUSIONS 

As a result of joining together LIDAR tech-
nology and the stepwise regression tree model-
ling technique, a precise cartography can be 
obtained. Accuracy, which is not achieved with 
classical interpolation methods from sparse 
point data.   

LIDAR potential to calculate snow depth and 
subsequent water resources has been demon-
strated within this paper. Despite these initial 
satisfactory results in further studies LIDAR ac-
curacy to determine snow depth is going to be 
validated with more field data.  
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Figure 6. Snow depth map obtained from extrapolated LIDAR data. 
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