La GS és un recurs disponible arreu, 24 hores al dia els 365 dies de l'any, quasi-independent de condicions meteorològiques,
eficient i renovable

GEOTÈRMIA SUPERFICIAL

- Emmagatzematge o bescanvi d'energia tèrmica mitjançant BOMBES DE CALOR (o no) per sota de
la superficie terrestre

Els excedents de calor de col-lectors solars tèrmics ($>30^{\circ} \mathrm{C}$) poden ser emmagatzemats o reaprofitats. La hibridació amb panells FV pot
„ 31.5% viu
a zones urbanes amb molt alta densitat de població (més de 10^{4} hab. $\left./ \mathrm{km}^{2}\right)^{(1)}$

al 71.2% de

la població catalana viu a nuclis amb més de $\left.10^{3} \mathrm{hab} . / \mathrm{km}^{2}\right)^{(1)}$

Les grans masses d'aigua
(rius, llacs o el mar) mostren una variació anual
de la temperatura moderada si es compara amb l'aire. Bona opció per a refrigeració passiva

Les sondes bescanviadores

 de calor incrustades a fonamentacions profundes ($>10 \mathrm{~m}$) atribueixen una doble funcionalitat a elements estructuralsEl calor dissipat a
 ferroviàries subterrànies causa un escalfament progressiu del subsòl ($>25{ }^{\circ} \mathrm{C}$) aprofitable amb solucions de GS
confinats pot ser abstreta i re-injectada (sistemes OL) per al
bescanvio emmagatzematge de
calor

L'excedent de calor de la xarxa de clavegueram normalment es perd (Aigües residuals $>15{ }^{\circ} \mathrm{C}$)
TAFs, WWHES Excedents de calor de la indústria ($>60^{\circ} \mathrm{C}$). Bona opció per a calefacció passiva

Combinada amb altres fonts i tecnologies renovables, la GS pot contribuir decisivament a
l'autosuficiència energètica de les ciutats ia reduir l'efecte "illa de calor"

L'ús directe del calor de formacions geològiques profundes és un altre recurs que en moltes ciutats es podria aprofitar per implementar xarxes de climatització urbanes (District Heating and Cooling grids) o cogeneració.
L'aprofitament d'aquest tipus de recursos requereix d'estudis geològics avançats

[^0]
El Sol és la veritable font principal de la GS, molt per davant del calor
 intern de la Terra

LA GS A CATALUNYA ${ }^{(2)}$:
 $42.38 \mathrm{MW}_{\text {tinventariats }}>\mathbf{7 0 0}$ projectes identificats ${ }^{\circ}$ $\mathbf{2 5 \%}$ al sector públic $\mathbf{8 4 , 3 \%}$ dels sistemes són BHEs

La GS és sinònim de generació local i distribuida. Un ingredient clau en la transició energètica i les planificacions urbanistica i territorial del futur
 Ritme consum promig a Barcelona ciutat ${ }^{(4)}$ $16.84 \mathrm{~W} / \mathrm{m}^{2}$ Ritme consum promig a Catalunya ${ }^{(1)}$ $1.06 \mathrm{~W} / \mathrm{m}^{2}$

En gran extensions de terreny, les sondes horitzontals, tot i què menys eficients i amb una major dependència de la temperatura ambient, són una alternativa CL de baix cost comparades amb els BHEs

[^1]2. Base de dades d'instal-lacions de Geotèrmia superficial de Catalunya, BDIGSCat-ICGC (2021)
3. Nature Geoscience 5, 671-696 (2012)
4. Ajuntament de Barcelona. Medi Ambient i Serveis Urbans - Ecologia Urbana i Agència d'Energia de Barcelona (2019) 5. Turcotte D.L. \& Schubert G., "Geodynamics" (2nd ed. 2002)

BHES
A zones d'alta muntanya, la GS ofereix solucions de calefacció altament eficients, fins i tot amb valors de Tambient sota zero

Aquests nuclis representen el 77.7\% Del territori català ${ }^{(1)}$

CTES, GWHES
Les mines clausurades i inundades de manera natural representen grans reservoris d'aigua subterrània amb una temperatura atractiva (>15으) , tant per al bescanvi com per a l'emmagatzematge de calor

[^0]: La temperatura del subsòl està dominada per la irradiació solar prop de la superficie (primers 10-15m). A partir d'aquest punt, el gradient geotèrmic ($20-30{ }^{\circ} \mathrm{C} / \mathrm{km}$) preval.

[^1]: 1. Institut d'Estadistica de Catalunya (2020)
