

Institut Cartogràfic de Catalunya

Calibración del sensor y ajuste del bloque

Wolfgang Kornus Unitat de Fotogrametria

Índice

Errores del sistema LIDAR y sus efectos

- Errores de distancia
- Errores de la dirección del rayo
- Errores de la actitud del sensor LIDAR
- Métodos de la calibración
- Ajuste de pasadas

Calibración del sensor

AND INCOME IN CASE OF A DESCRIPTION OF A

Problemática:

- Representación de la pasada
- 🗆 girada
- 🗅 curvada
- □ desplazada

Componentes básicos

Errores del sistema LIDAR

 La posición (lever arm) y la orientación (boresight) de la IMU referente al sistema LIDAR deben ser constantes y conocidas (observadas con precisión)

Fuente: Katzenbeisser

Errores del sistema LIDAR

- La posición (lever arm) y la orientación (boresight) de la IMU referente al sistema LIDAR deben ser constantes y conocidas (observadas con precisión)
- Interrupción de la señal GPS
- Salida o puesta de satélites GPS
- Cambio de las condiciones troposféricas
- Efectos "multipath"

Errores de la distáncia

$$t = \frac{n}{f} + \Delta t \implies s = \frac{n}{2f}c_a + \Delta s$$

- *t*: tiempo entre emisión y recepción de un pulso
- s: distancia al objeto
- *f*: frecuencia de un oscilador (contador)
- *n*: número de ciclos (counts)
- c_a: velocidad de la luz en la atmósfera

Errores de la distáncia

$$t = \frac{n}{f} + \Delta t \implies s = \frac{n}{2f} c_a + \Delta s$$

- Retrasos causados por caminos ópticos (constante) o elementos electrónicos
 - Envejecimiento: bien determinable
 - Temperatura: variable durante el vuelo
- Atmósfera
 - Variable en función de temperatura, presión y humedad
- Frecuencia del oscilador

Errores de la deflexión del rayo

Errores de la deflexión del rayo

Zero-offset

 desalineamiento mecánico entre espejo y encoder

 $\alpha_D(t) = \alpha(t) +$ $\Delta \alpha$

- zero shift dentro del A/D converter
- Factor d'escala
 - gain control erróneo (A/D-converter)
 - causado por el encoder

$$\alpha_D(t) = \alpha(t) \cdot (1 + \beta)$$

Precisión de GPS (en buenas condiciones):

 $\sigma_x = \sigma_y = \sigma_z$: ~0.05 m

Requisitos:

- Area plana, sin vegetación, cubriendo todo el ancho del barrido (e.g. pista de un aeropuerto)
- 100 200 puntos de campo
- Edificio de calibración largo con tejado plano

Edificio de calibración:

 Pitch-Offset: datos LIDAR sobre edificio en modo perfil (ángulo de barrido: 0°)

 Roll-Offset: datos LIDAR sobre edificio al extremo de la pasada

(ángulo de barrido: ~20°)

- Pista del aeropuerto de <u>Reus:</u>
 - 2 o 4 pasadas ortogonales
 - Perfiles a lo largo de la pista

Pista del aeropuerto de Reus:

- 2 o 4 pasadas ortogonales
- Perfiles a lo largo de la pista
- Proceso iterativo

Error d'escala

Error de la actitud (roll)

Proceso automático (TerraMatch):

Apply results

Starting average dz:

0.2472

File

Ajuste de pasadas

Configuración del bloque:

- 5 áreas de control (20 puntos de campo cada una)
- Pasadas transversales cruzando las pasadas del proyecto y 1 área de control (cómo mínimo)
- Cada pasada del proyecto está cruzada por 1 pasada transversal (como mínimo)

Ajuste de pasadas

Flujo de trabajo (automático):

- Definir zonas de solape entre pasadas
- Definir zonas de solape entre campo y pasadas
- Clasificar puntos de suelo y calcular DEM por pasada
- Calcular diferencias en altura *dh*
 - entre pasadas
 - entre campos y pasadas

- dh entre campo y pasada
- *dh* entre pasadas

Ajuste de pasadas

Resultados prácticos:

[m]	Bloque A			
Día	1	2	3	4
# Pas.	9	17	14	9
Mín.	0.09	0.19	0.09	0.05
Máx.	0.18	0.27	0.22	0.18
Medio	0.13	0.24	0.14	0.10
σ	0.03	0.02	0.03	0.05

Bibliografía

- W. Kornus, A. Ruiz, 2003: "Strip Adjustment of LIDAR data",
 - Proceedings of ISPRS Workshop on "3-D Reconstruction from Airborne Laser-Scanner and InSAR data",
 - 8-10 October 2003, Dresden, Alemania
- R. Katzenbeisser, 2003: "About the Calibration of LIDAR sensors",
 - Proceedings of ISPRS Workshop on "3-D Reconstruction from Airborne Laser-Scanner and InSAR data",
 - 8-10 October 2003, Dresden, Alemania
- Para informaciones sobre los productos de TerraSolid (e.g. TerraMatch)
 - <u>http://www.terrasolid.fi/</u>

Institut Cartogràfic de Catalunya

wolfgang.kornus@icc.cat

Parc de Montjuïc, E-08038 Barcelona

41°22'12" N, 2°09'20" E (ETRS89)

Tel. (+34) 93 567 15 00 Fax (+34) 93 567 15 67

http://www.icc.cat

Gracias por su atención !

